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Abstract

Three-dimensional numerical simulations are presented of flow past a curved body at a Reynolds number of 100. The

geometry consists of a circular cross-sectioned body, whose centreline axis is prescribed by a quarter ring with a

horizontal extension. This plane of curvature of the body is aligned to the free-stream flow direction such that the outer

part of the ring is the body’s stagnation face (convex configuration). The bluff body is forced to sinusoidally vibrate in

the cross-flow direction at different amplitudes and frequencies. The resulting vortex shedding is strongly influenced by

the curvature of the body. Within the lock-in region for a straight cylinder, the shedding past the convex body exhibits a

2S mode for all the pairs of input parameters tested; outside this region, a ‘‘weak’’ form of shedding with two pairs of

counter-rotating vortices per cycle occurs in the top part of the body. At lower amplitudes of oscillation and frequencies

below the Strouhal value for a straight cylinder, dislocations are found in the near wake: these generally occur in

the middle of the curved part of the body, at an angle of approximately 45� from the top plane, regardless of

the amplitude of oscillation. However, at very low amplitudes, an increase in the input frequency is found to influence

the spanwise position of the dislocations by shifting them towards the top sections. The wake dynamics and force

distribution are associated with the relative importance of the different regions of the curved geometry: the top region,

nearly perpendicular to the inflow and therefore comparable to a straight cylinder, and the lower region with the

horizontal extension, which is parallel to the inflow direction and hence behaves similarly to a slender body. The

influence of the force contributions from these regions and their different nature determine the occurrence of

dislocations in the wake, as well as their position along the span. The energy transfer mechanism, which determines

whether the body is excited or damped by the flow, is also affected by this balance: at very low amplitudes the top part

undergoes a lift force due to vortex shedding, which is strong enough to overcome the dampening effect from the

horizontal extension used in this case and therefore provides a positive energy transfer from the fluid to the structure.

r 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

A useful approach to understanding and eventually predicting a complex problem like vortex-induced vibration is

represented by forced vibration simulations, in which the amplitude and the frequency of motion can be varied
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independently. One of the most comprehensive studies on this matter was carried out by Williamson and Roshko

(1988), who studied the wake of a circular cylinder forced to move along a sinusoidal path in the range 300oReo1000

by varying the amplitude and the frequency of oscillation. They identified three principal types of vortex patterns,

which characterised different regions of the plane (l=D, A=D), i.e. a 2S mode (two oppositely signed vortices per cycle),

a 2P mode (two pairs of oppositely signed vortices per cycle) and a P+S mode (a single vortex and a pair of vortices per

cycle). Two-dimensional numerical computations were not able to reproduce the 2P mode of shedding, probably due to

the limitations on the Reynolds number dictated by the computational cost. In their two-dimensional simulations,

Meneghini and Bearman (1995) established the lock-in boundary for vortex shedding of a cylinder forced to oscillate in

the transverse direction at Re ¼ 200. For A=Do0:6, they identified a 2S shedding mode and labelled this kind of

synchronisation ‘‘primary lock-in’’. As the amplitude was increased to higher values, the wake presented a Pþ S mode

of shedding, but no evidence of the 2P mode was found. Similarly, the results obtained by Blackburn and Henderson

(1999) at Re ¼ 500 could successfully reproduce only 2S and Pþ S modes. More recently, Leontini et al. (2006)

generated a parametric map using two-dimensional simulations of a circular cylinder in forced vibration at fixed

Reynolds numbers of 100 and 200. They investigated the mechanism behind the formation of the different modes and

the direction of the energy transfer: the latter was found to be primarily dependent on frequency at low amplitudes of

oscillation but strongly dependent on amplitude at higher amplitudes (i.e. A=D40:4). The boundaries between positive

and negative energy transfer were relatively insensitive to the Reynolds number, which in turn influenced the width of

the lock-in region and the wake modes. Ponta and Aref (2005, 2006) presented a theoretical argument to explain the

mode transition in the Williamson and Roshko map: the mechanism controlling the formation of different modes was

suggested to be dependent on a fine balance of the splitting mechanism (as also discussed by Govardhan and

Williamson, 2000) and the level of fluctuation in the shedding frequency played an important role in the transition from

a 2P to a Pþ S mode. Willden et al. (2008) carried out a similar parametric study by means of two-dimensional

simulations at Re ¼ 100: this is shown in Fig. 1 and used as a reference in the present work. In all these investigations,

the 2S mode was found to be predominant in the lock-in region and the P+S mode appeared only at higher amplitudes

(i.e. A=D40:8 for Re ¼ 100). One of the first numerical simulations of the 2P mode was performed by Blackburn et al.

(2000), who found this mode associated with a double-peaked form in the time-series of the lift coefficient. By

comparison with two-dimensional calculations, they demonstrated that three-dimensional computations are required to

reproduce the response envelope observed experimentally.

Nuzzi et al. (1992) investigated the vortex formation past a cylinder with a gradual spanwise nonuniformity subjected

to transverse controlled oscillations. Globally locked-in states were found to occur along the entire span. At low

excitation frequencies, regions of period-doubled vortex formations appeared from the three-dimensional portion of the

cylinder, while the straight two-dimensional region maintained a locked-in response: the lock-in region for the

nonuniform portion was found to be shifted towards higher input frequencies, at which low-frequency modulations

occurred in the straight part. Due to the larger formation length and to the higher phase speed of the instability, the

vortex formation from the three-dimensional portion was found to lead that from the two-dimensional part of the
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Fig. 1. Left: Sketch of the convex configuration. Right: Map of vortex shedding modes for a tow-dimensional cylinder at Re ¼ 100

(Willden et al., 2008) with the flow states analysed in the present simulations.
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cylinder. The period-doubled state was characterised by the alternating formation of split and unsplit vortices and

dislocations were observed: however, this mode of shedding did not involve vortex coalescence.

Although vortex dislocations are found to be an inherent feature of the three-dimensional wake transition, their

presence has also been observed in the laminar vortex shedding regime, where they appeared in a more ordered and

periodic fashion than in the transition regime. As observed by Eisenlohr and Ecklemann (1989) and Williamson (1988,

1989), this phenomenon is associated with the presence of oblique shedding and is hence strictly related to the end

conditions of the experiments. Williamson (1992) provided experimental evidence that dislocations appear between cells

of different frequency and involve vortex splitting, whereby a vortex of one sign in one cell is divided and linked to two

vortices of the same sign in the other cell: this mechanism occurs at a beat frequency f 1 � f 2, where f 1 and f 2 are the

shedding frequencies in the two cells, and involves helical twisting of the vortex lines within a vortex, inducing an axial

core flow outwards from the dislocation. The downstream growth of the dislocations is found to cause large velocity

fluctuations at low frequency and is associated to the relatively slow decay of fluctuation energy as compared with the

laminar wake.

The type of curved geometry presented in this paper was studied for the first time by Miliou et al. (2007), who

investigated the vortex shedding past the fixed convex cylinder in a uniform flow. A 2S mode of shedding with straight

cores was observed at Re ¼ 100 with only one dominant frequency for the whole body. As a result of the curvature, the

distance between the detaching vortex and the cylinder decreased from the top of the quarter ring to the bottom:

therefore, the curved stagnation face introduced a gradual phase shift along the span and the influence of the developing

shear layers on the body (and subsequently the force distribution) changed accordingly. Since the cylinder was kept

fixed, the horizontal extension did not influence the vortex shedding in the curved part and no significant forces were

detected in this region.

In the present paper, Section 2 outlines the computational technique and the details of the configuration examined.

The effect of the curvature on the type of shedding and on the energy transfer is analysed in Section 3, where the

consequences of frequency and amplitude variations are also discussed; a ‘‘weak’’ form of shedding with vortex

dislocations is also presented in this section. The occurrence of vortex dislocation is further investigated in Section 4.

Finally, a summary of the results and conclusions is given in Section 5

2. Computational technique

The incompressible Navier–Stokes solver employed in the computations throughout this work is the parallel three-

dimensional spectral element code N�ktar (Karniadakis and Sherwin, 2005). This is based on the spectral/hp-element

method for the spatial discretisation, while the temporal accuracy is achieved using a high-order stiffly stable splitting

scheme (Karniadakis et al., 1991). The solution at time tnþ1 is obtained from the solution at tn over three sub-steps.

First, the nonlinear term is treated explicitly, then a Poisson equation for the pressure is obtained by taking the

divergence of the pressure term and by enforcing the incompressibility constraint. Finally, the diffusive term is treated

implicitly in the last sub-step.

Fig. 1 (left) illustrates the layout of the convex configuration: this is based on a quarter ring whose radius of

curvature, R ¼ 12D, has been chosen close to the limit value for the flexible pipes used in off-shore applications. The

free-stream is aligned to the plane of curvature and the cylinder is forced to oscillate in the transverse direction (y-axis).

s=D represents the nondimensional arc-length, with s=D ¼ 0 and 19:6 denoting the top and the end of the quarter ring,

respectively. Symmetry boundary conditions are assigned to the top plane boundary of intersection with the curved

cylinder (w ¼ 0, du=dn � du=dz ¼ 0 and dv=dn � dv=dz ¼ 0), while a fully developed zero stress condition is imposed

at the outflow of the computational domain.

3. Effect of curvature on the energy transfer mechanism

Fig. 1 (right) illustrates the pairs of nondimensional input parameters ðf s=f 0;A=DÞ investigated in this study, overlaid

on the parameter plane obtained by Willden et al. (2008) with two-dimensional simulations at the same Reynolds

number of 100. The amplitude of oscillation ranges from a minimum value of 0:1D to a maximum of 0:5D, whereas the

input frequency f 0 varies from 0:5f s to 1:3f s, where f s is the Strouhal number for a fixed straight cylinder at Re ¼ 100.

3.1. High amplitudes: hydrodynamic damping from the horizontal extension

At A=D ¼ 0:5, the shedding from the top part of the quarter ring is found to be driven by the one in the lower part:

the influence of this region is predominant and determines the wake topology further above. Fig. 2 shows the l2
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iso-surfaces and the sectional distribution of the lift coefficient for A=D ¼ 0:5 and f 0 ¼ 1:1f s: the vortical structures are

aligned to the cylinder’s axis and the lift force is in phase with the body’s motion. Its magnitude is markedly higher in

the lower half of the quarter ring and in the horizontal extension than at the top: this is an intrinsic feature of this

geometry and it has a significant influence on the energy transfer mechanism.

The part of the lift coefficient in phase with the cylinder’s velocity, CLv
, is proportional to the energy transferred from

the fluid to the body (when CLv
40) and vice versa (when CLv

o0). Its behaviour is illustrated in Fig. 3 (right) for

A=D ¼ 0:5 and f 0=f s ¼ 0:6, 0:9, 1:1 and 1:3: CLv
is negative at every spanwise location, with the most negative values

occurring in the lower part of the geometry (s=D410) where the total lift coefficient reaches the highest magnitude.

Therefore, this region acts as a hydro-dynamic damper to the whole structure, preventing the top part to be excited by

the vortex shedding (with the only exception of the case at f 0=f s ¼ 1:3, where CLv
is mildly positive for 0os=Do3).

As the frequency ratio is decreased from 1:3 to 0:6, the value of CLv
in the lower region increases but it does not become

positive; at the same time the value at the top decreases slightly. For all the frequencies tested at this amplitude, the

integral of the energy transferred along the whole span is found to be negative. For y445� (corresponding to

s=D � 10), the axial component of the incoming velocity is significantly greater than the normal one and therefore this

region shows similarities to a slender body, becoming entirely parallel to the inflow direction in the horizontal addition:

following the ‘‘Independence Principle’’, the pressure field and hence the pressure force in this region appear to be
Fig. 2. Left: Wake topology for the flow past the convex configuration at f i ¼ 1:1f s and A=D ¼ 0:5 (Re ¼ 100); iso-surfaces at

l2 ¼ �0:1 and tU1=D ¼ 524:5. Right: Time evolution of the sectional lift coefficient along the cylinder span.
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at A=D ¼ 0:5 and different input frequencies ðRe ¼ 100Þ.
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insensitive to the axial velocity component. Fig. 3 (left) clearly shows the predominance of the force contribution arising

from this lower portion of the body; the force coefficient increases and its peak shifts to the middle region (s=D ¼ 10) as

the input frequency is increased. However, due to the alignment of the body with respect to the flow direction, this is a

spanwise ‘‘drag-type’’ of force, whose magnitude and frequency are well predicted by Morison’s equation based on

mean in-line force coefficients in the direction of the cross-flow. The force given by Morison’s equation for an oscillating

cylinder in a stationary flow with Keulegan–Carpenter number KC ¼ p and Stokes parameter b ¼ 18:04 isdisplayed in

Fig. 4 together with the lift signal at s=D ¼ 26:6. The coefficients used to calculate the lift force in the horizontal

extension can be found in Bearman et al. (1985) and are given as

CM ¼ 1þ 4ðpbÞ�1=2; CD ¼
3
2
p3KC�1ðpbÞ�1=2.

3.2. Vortex shedding outside the two-dimensional lock-in region

Simulations of the vortex shedding at very low frequencies were performed at A=D ¼ 0:5 and Re ¼ 100. The pair of

input parameters ðf 0=f s ¼ 0:6;A=D ¼ 0:5Þ lies outside of the ‘‘conventional’’ lock-in region depicted in Fig. 1 (left)

(where the frequency ratio in the x-axis is given as f s=f 0). The l2 iso-surfaces and the spanwise distribution of the

sectional lift coefficient are presented in Fig. 5. Similar to the shedding at higher frequencies, it is the lower part of the

geometry that influences the energy transfer mechanism, preventing this configuration to be excited by the flow:

however, the magnitude of CL and CLv
for s=Do10 is now comparable to the one in the upper half of the body, as

displayed in Fig. 3.

The lift distribution along the span highlights the presence of vortex dislocations at s=D ¼ 10, which result from the

competition between the frequencies at the top and at the lower half of the cylinder: the region 0os=Do10 tends to

shed vortices with a straight core at the higher frequency f top, whereas for s=Do10 the effect of curvature prevails and

the cores are bent and shed at the imposed frequency (f bottom). Subsequently, at t1 in Fig. 5 (right), f top is prevailing and

the cylinder sheds a straight vortex that detaches from the shear layer at about s=D ¼ 10, giving rise to a dislocation.

At t2 in the following cycle, when the influence from the bottom part is predominant, a pair of curved vortices is shed in

the fashion described in Section 3.1. However, these two types of cores do not have the same strength, as the level of

vorticity in the curved core is significantly higher: the vorticity in the straight core is not sufficiently concentrated to cut

off the supply of circulation to the forming vortex on the opposite side and this weaker core detaches once the cylinder’s

motion changes direction, without interaction with the opposite shear layer. This weak form of shedding is illustrated

through iso-contours of spanwise vorticity in Fig. 6 (left), while the curved vortex shedding dynamics is visualised in

Fig. 6 (right). The wake topology past the top sections is similar to a 2P mode, with two counter-rotating vortex pairs

shed per cycle, as described by Williamson and Roshko (1988). However, a closer analysis reveals that the vorticity

distribution in this ‘‘weak’’ type of shedding is different from the one in the 2P mode: here the two vortices that form the

pair maintain the same vorticity sign in each shed pair (i.e. the first is positive and the second is negative in every pair, as

shown in Fig. 6 (left)). This is consistent with the idea that the Strouhal frequency f s is trying to re-assert itself in this

region of the cylinder, which therefore tends to shed vortices at a frequency that is nearly double the frequency imposed.

3.3. Effect of the amplitude variation on the energy transfer mechanism

At lower amplitudes, the influence of the horizontal extension is weakened and the shedding from the upper half of

the cylinder is stronger. Two distinct trends for the lift coefficient are found to occur depending on the frequency ratio

value. At f 0=f s ¼ 0:9, the lift coefficient still reaches its maximum value in the lower part of the body, as shown in

Fig. 7: however, when the amplitude of oscillation is reduced, the peak shifts further along the span, until for A=D ¼ 0:1
it occurs at s=D � 12. At the same time, CLv

in the range 0os=Do12 becomes positive for A=D ¼ 0:1 and 0:25, with a

maximum at s=D ¼ 9. This suggests that the region of the body’s span that determines the direction of the energy

transfer is located in the middle part of the quarter ring. The spanwise location of the maximum CLv
appears to be the

same at all the amplitudes tested (see Fig. 7 (right)), suggesting that it may depend on the frequency only.

At f 0=f s ¼ 1:1, the part of the lift coefficient in phase with the velocity sharply increases: Fig. 8 shows that the

maximum positive value for CLv
at A=D ¼ 0:1 and 0:25 is now reached in the top sections (0os=Do6), as opposed to

f 0=f s ¼ 0:9 where the peak in CLv
occurs in the middle part of the quarter ring. Similarly, at these lower amplitudes, the

total lift coefficient attains a maximum for s=D410: the direction of the energy transfer is thus determined in the upper

half of the body.

The net energy transfer for the whole structure is positive for ðA=D ¼ 0:1; f s=f 0 ¼ 0:9Þ, ðA=D ¼ 0:1; f s=f 0 ¼ 1:1Þ and
ðA=D ¼ 0:1; f s=f 0 ¼ 1Þ: although the exact boundaries for the excitation region in the parameter plane have not been
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Fig. 4. Lift signal for A=D ¼ 0:5 and f 0=f s ¼ 1:1 at a section s=D ¼ 26:6 (horizontal extension) and force signal given by Morison’s

equation.

Fig. 5. Left: Wake topology for the flow past the convex configuration at f 0 ¼ 0:6f s and A=D ¼ 0:5 (Re ¼ 100); iso-surfaces at

l2 ¼ �0:07 and tU1=D � t1. Right: Time evolution of the sectional lift coefficient along the cylinder span.

Fig. 6. Case at ðf 0=f s ¼ 0:6;A=D ¼ 0:5Þ: spanwise vorticity at t1 ¼ 249:2 (y ¼ 0:5), when the straight vortex core is shed (left), and at

t1 ¼ 254 (y ¼ �0:5), when the curved vortex core is shed (right). Dashed lines for negative vorticity.
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Fig. 7. Spanwise distribution of the total lift coefficient CL (left) and of the lift coefficient in phase with the body’s velocity CLv
(right)

at f 0=f s ¼ 0:9 and different amplitudes of oscillation ðRe ¼ 100Þ.

Fig. 8. Spanwise distribution of the total lift coefficient CL (left) and of the lift coefficient in phase with the body’s velocity CLv
(right)

at f 0=f s ¼ 1:1 and different amplitudes of oscillation ðRe ¼ 100Þ.
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determined, these results show that the excitation region for this configuration is considerably contracted when

compared to its two-dimensional counterpart.
4. Vortex dislocations

As discussed in Section 3.2, the three-dimensionalities introduced by the body’s curvature may lead to the occurrence

of dislocations in the wake: this is particularly evident at low values of excitation frequencies, in regions of the

ðA=D; f 0=f sÞ plane outside the lock-in boundaries. This phenomenon has also been observed at low amplitudes of

oscillation: for A=D ¼ 0:1 and excitation frequencies below the Strouhal value, two distinct shedding frequencies were

observed along the span of the cylinder, i.e. a higher frequency in the top part of the quarter ring (f top) and a lower

frequency corresponding to the imposed frequency for the forced vibration in the lower region (f bottom). Vortex

dislocations are periodically formed in the wake as these cells move out of phase with each other. Consistent with

findings in past literature on shedding at low Reynolds numbers (Williamson, 1992), their occurrence is found to be

periodic in time and at fixed positions along the span, as shown by the spanwise iso-contours of CL in Fig. 9 for

f 0=f s ¼ 0:7, 0:8 and 0:9. In all of these three cases, the dislocation is characterised by a beat frequency

f D ¼ f top � f bottom. When the imposed frequency is increased from 0:7f s to 0:9f s, the dislocation position shifts

towards the top of the cylinder and its frequency f D decreases. It should be noted that the imposed frequency always

corresponds to the value f bottom found at s=D412 approximately.
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Dominant frequencies at three different spanwise locations, namely in the top part, at the dislocation position and in the bottom part

of the quarter ring.
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Williamson (1992) analysed the natural and forced formation of vortex dislocations in the laminar regime and used a

small ring disturbance to trigger this mechanism at a local spanwise position; the dislocation frequency was found to

decrease with decreasing ring diameter. In the curved cylinder there is no such disturbance; however, if we consider two-

dimensional sections in the plane ðx; yÞ placed at different spanwise locations, the local cross-section of the body is an

ellipsis whose greater diameter is larger than the cylinder diameter D: similar to the ring diameter in Williamson’s

experiments, this introduces a different length-scale in the problem. An approximate relationship between the ratio of

the dislocation frequency to the primary vortex shedding frequency and the greater diameter of the elliptical cross-

section De was found to hold for the cases presented in Fig. 9. This is given as f D=f 0 ¼ De=D� 1. Substituting

the oscillation frequency f 0 and the dislocation frequency f D, this equation provides a value for De that identifies the
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cross-sectional plane at which the dislocation is expected to occur: for the three frequencies presented in Fig. 9,

f 0=f s ¼ 0:7, 0:8 and 0:9, the nondimensional arc-lengths corresponding to the evaluated elliptical diameter are

s=D ¼ 10:6, 8:9 and 7, respectively (as indicated by the dashed line in the lift iso-contour plots). This is in agreement

with the value at the lower boundary of the dislocation highlighted by the lift iso-contours in Fig. 9 (left), where the

vortex splitting takes place.

A further observation which supports this interpretation may be derived from the existence of a mathematical

relationship that allows the oblique-shedding Strouhal data Sty to collapse onto the parallel-shedding Strouhal curve

St0, hence giving rise to an universal St/Re curve. Williamson (1989) provides experimental evidence that such a

relationship exists in the form St0 ¼ Sty= cos y, where y is the angle of oblique shedding. If we consider the shedding

form the top of the body to be nearly parallel to the cylinder’s axis in the upper half of the quarter ring and the bent

cores in the lower part to be at an oblique angle y dependent on the nondimensional arc-length at which the dislocation

occurs, a similar relationship can be given as

f top ¼ f bottom= cos y. (1)

Substituting the value of the frequencies found by means of the spectral analysis (see Fig. 9 (right)), Eq. (1) leads to a

value for y which identifies the same spanwise positions for the dislocation given by the argument of the elliptical cross-

sections illustrated above.

5. Conclusions

Fully three-dimensional forced vibration simulations have been performed to investigate the complex vortex

dynamics past a curved convex cylinder in the laminar shedding regime.

The difference between CLtop
and CLbottom

increases with the frequency ratio f 0=f s for a fixed amplitude of 0:5D.

A similar trend is found when the amplitude of motion is increased at fixed frequency ratios equal to 0:9 and 1:1. At higher

amplitudes, the dampening influence stemming from the extension propagates towards the top region when the imposed

frequency is increased, resulting in a negative energy transfer for the whole geometry: the lower part of the body is

therefore predominant at these amplitudes. This region behaves like a slender body oscillating in a uniform flow and

undergoes a spanwise ‘‘drag-type’’ of force, which can be correctly predicted by Morison’s equation. However, when the

oscillation amplitude is reduced to 0:1D and 0:25D, CLv
shifts towards positive values and an excitation region can be

identified. Its extension appears significantly contracted when compared to that of the two-dimensional cylinder. At these

lower amplitudes, the energy transfer mechanism is found to be primarily influenced by the middle region (at f 0=f s ¼ 0:9)
and by the top region (at f 0=f s ¼ 1:1). A similar result was obtained by De Vecchi et al. (2007), when the convex

configuration was forced to transversely rotate about the axis of the horizontal extension, which was therefore kept fixed.

When the frequency ratio is chosen outside the lock-in region ðA=D ¼ 0:5; f 0=f s ¼ 0:6Þ, a ‘‘weak’’ form of shedding

appears at the top sections. Its occurrence is related to the competition between two frequencies: the upper half of the

body sheds two pairs of straight vortices per cycle at a frequency close to the Strouhal value, while curved cores detach

from the lower region in a 2S mode at the imposed frequency. Vortex dislocations are observed in the middle of the

quarter ring at y � 45�. This phenomenon also occurs at low amplitudes; similar to the case at ðA=D ¼ 0:5; f 0=f s ¼ 0:6Þ,
the dislocations result from competing frequencies in the different regions of the span and take place at a beat frequency

f D ¼ f top � f bottom. They occur periodically and at fixed spanwise positions; as the imposed frequency is increased and

the amplitude is kept fixed at A=D ¼ 0:1, their location moves towards the top of the body and their frequency f D

decreases. When f 04f s, they disappear and the shedding is again governed by the middle/lower part of the body; this is

consistent with the findings of Nuzzi et al. (1992), who observed an alternation of split and ‘‘unsplit’’ vortices only at

low frequencies. This shift in the spanwise position of the dislocation is associated with the introduction of different

length-scales in the problem, as a result of the body’s curvature. A qualitative argument based on the mathematical

relationship proposed by Williamson (1992) appears to support this conclusion.

From an energy point of view, the presence of a dislocation gives rise to a ‘‘pocket’’ of excitation just below the

dislocation point: CLv
reaches its maximum at the same value of s=D at which the dislocations occur and its peak value

increases with the spanwise extension of the dislocation.
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